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APRESENTACAO

O terceiro volume da Educacéo: Saberes em Movimento, Saberes que Movimentam,
publicado pela Editora Artemis, convoca a inovacao enquanto denominador comum. Uma
inovacao em torno de diversos cenarios digitais, que hoje, mais do que nunca, populam os
nossos quotidianos, em diferentes niveis de ensino. Mas também uma inovagcédo em torno
de competéncias de literacia ditas basicas, tradicionais, como a leitura e a escrita, todas
inerentes ao direito universal a educacao e a aprendizagem ao longo da vida, designios
que a UNESCO nos estimula a concretizar, dia apos dia.

Celebrar o dia internacional da educagéo, assinalado precisamente ha um més, é ir
ao encontro desta inovagao - curricular, pedagodgica, tecnoldgica — que permita contribuir
para atender as necessidades dos nossos alunos, estudantes, professores, formandos,
enfim, numa palavra, dos educadores em todo o mundo. Uma inovagao contextualizada,
holistica e transformadora, que permita contribuir para assegurar, aos individuos e aos
coletivos, o desempenho consciente de um papel ativo, critico e interventivo na sociedade.

Nos Saberes em Movimento, Saberes que Movimentam aqui reunidos, ha ainda
espaco e tempo para recordar que a Educacdo mudou significativamente, em alguns
pontos do globo, mais do que noutros, durante a COVID-19. Esta pandemia, a par de
outras situagdes atuais de grande adversidade, continua a provocar mudangas com
impacte no nosso presente e futuro. Importa, pois, (re)imaginar diregdes positivas para
a educacdo’; importa, portanto, (re)imaginar os nossos futuros em conjunto® E que os
Saberes plasmados nestes capitulos possam ser o ponto de partida para (re)iniciar esta

conversa, tdo essencial quanto vital®!

Teresa Cardoso

' cf. https://portal.uab.pt/investigacao/projetos/rapide-reimagining-a-positive-direction-for-education/ Acesso em:
25 fev. 2023.

2 cf. https://unesdoc.unesco.org/ark:/48223/pf0000381115 Acesso em: 25 fev. 2023.

3 cf. https://www.guninetwork.org/publication/unesco-futures-education-report-reimagining-our-futures-together-
new-social-contract Acesso em: 25 fev. 20283.
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CAPITULO 11

CONSTRUCTION OF ARITHMETIC-ALGEBRAIC THINKING
IN A SOCIO-CULTURAL INSTRUCTIONAL APPROACH!

Data de submisséo: 06/12/2022
Data de aceite: 23/12/2022

Fernando Hitt

Profesor titular

Département de Mathématiques
Université du Québec a Montréal Montreal,
Quebec, Canada
https://orcid.org/0000-0002-9106-8806

ABSTRACT: We present the results of a
research project on arithmetic-algebraic
thinking that was carried out jointly by a
team in Mexico and another in Quebec?. The
project deals with the concepts of variable
and covariation between variables in the
sixth grade at the elementary level and the
first, second, and third years of secondary
school — namely, children from 11 to 14 years
old. We target secondary students (first year
or K7) in this text. Our objective relates to the

"This document was published in the proceedings of the
PME-NA 42: Hitt, F (2020). Construction of arithmetic-
algebraic thinking in a socio-cultural instructional approach.
In A.l. Sacristan, J.C. Cortés-Zavala & P.M. Ruiz-Arias, (Eds.).
Mathematics Education Across Cultures: Proceedings of
the 42nd Meeting of the North American Chapter of the
International Group for the Psychology of Mathematics
Education, Mexico (pp. 120-131). Cinvestav / AMIUTEM /
PME-NA. https:/doi.org/10.51272/pmena.42.2020

2 Joint project: Carlos Cortés (UMSNH); Samantha Quiroz
(UAC); Fernando Hitt; and Mireille Saboya (UQAM).

Educacao: Saberes em Movimento, Saberes que Movimentam Vol llI

development of a gradual generalization in
arithmetic-algebraic thinking in a socio-cultural
approach to the learning of mathematics. We
experimented with investigative situations
using a paper-and-pencil approach and
technology. We analyze the emergence,
in this context, of a visual abstraction, the
production of institutional and non-institutional
representations, a sensitivity to contradiction,
and, finally, the concepts of variable and of
covariation between variables.

KEYWORDS: Gradual generalization. Socio-
cultural approach. Arithmetic-algebraic
thinking.

1 INTRODUCTION:
PROJECT

STEPS OF THE

The project presented herein has been
ongoing since 2008, carried out jointly by a
team in Mexico and another in Quebec. The
experimentation was done at the primary and
secondary levels as well as in a pre-service
teacher education program.

« Step 1: studies of the concept
(Hitt,
Morasse, 2008; Hitt & Gonzalez-
Martin, 2015; Hitt & Quiroz, 2019;
Passaro, 2009) among students
in Secondary 2 and 3 (aged 13-15
year-old, K8 and K9).

of function Gonzalez &
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e Step 2: a study of the generalization of the concepts of variable and of
covariation between variables in relation to arithmetic-algebraic thinking
among Secondary 1 students in Quebec (aged 12-13 year-old, K7) (Hitt,
Saboya & Cortés, 2017, 2019a, 2019b) and among Secondary 3 students
in Mexico.

- Step 3: studies of the concepts of variable and covariation between variables
and of the generalization (in the transition from primary to secondary levels)
related to arithmetic-algebraic thinking among 6th grade elementary students
with learning difficulties in Mexico (11-12 year-old pupils, K6) (Hitt, Saboya &
Cortés, 20173, 2017b; Saboya, Hitt, Quiroz & Antoun, 2019).

Paez’s (2004) doctoral thesis worked on teacher training with a teaching method
based on collaborative learning, scientific debate, self-reflection, and the process of
institutionalization (ACODESA) (see Hitt, 2007).

In order to use the same method in our project, which targeted elementary and
secondary students, we had to use, in Step 1 of the project, the results obtained among
Secondary 2 and 3 students to create theoretical tools which would allow us to better
analyze students’ spontaneous representations and their role in the resolution of non-
routine situations.

Step 2, which is the focus of this paper, will allow us to better understand the
processes of abstraction® that trigger a generalization among students (in Secondary 1in
Quebec) in the transition from elementary to secondary levels as well as the construction
of a cognitive structure related to arithmetic-algebraic thinking (which we elaborate
further below).

We are currently in the process of analyzing the results of Step 3.

2 THEORETICAL FRAMEWORK: SOCIO-CULTURAL APPROACH TO LEARNING

Our approach to the construction of knowledge is based on the notion of activity
from Leontiev’s (1978) activity theory. According to Leontiev, activity, mediated by mental
reflection that situates a subject in the objective world, follows a system of social relations.
Leontiev holds that an individual’'s activity depends on their place in society and their life
circumstances (idem, p. 3). Further, activity is intimately related to a motive: “different
activities are distinguished by their motives. The concept of activity is necessarily bound

up with the concept of motive. There is no such thing as activity without a motive” (idem,

3 The following is a translation of the definition of abstraction in the Larousse dictionary: an intellectual operation
which consists in isolating by thought a characteristic of an object and considering it independently of the other
characteristics of that object.
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p. 6). Hence, the activity of an individual in a society has a central role in the “subject-
activity-object” relation (known as Leontiev’s triangle) which, in turn, is part of a system

of relations within the given society.

It stands to reason that the activity of every individual depends on his place
in society, on his conditions of life... The activity of people working together is
stimulated by its product, which at first directly corresponds to the needs of all
participants. (p. 3-6)
Engestrom (1987, 1999) analyzes Leontiev’s triangle as a model of the relation
between subject, object, and artefact-mediation, and concludes that Leontiev’s triangle

does not capture all elements and relations of a system:

| am convinced that in order to transcend the oppositions between activity and
process, activity and action, and activity and communication, and to take full
advantage of the concept of activity in concrete research, we need to create
and test models that explicate the components and internal relations of an
activity system..To overcome these limitations, the model may be expanded.
(p. 29-30).

Voloshinov’s (1929/1973) ideas about the construction of sign emphasize
the importance of the collaborative work that enriches Leontiev and Engestrom’s
theoretical approach: “[t]he reality of the sign is wholly a matter determined by that
communication. After all, the existence of the sign is nothing but the materialization of
that communication. Such is the nature of all ideological signs” (p. 13).

Building on the ideas above, we adapted Engelstrom’s model (see Figure 1) while
adhering to the ACODESA teaching method (Hitt, 2007). The mathematics classroom
is viewed as a microsociety whose various members are the teachers, the students, the
institution, and the tools used in the co-construction of knowledge through the resolution
of investigative situations (physical materials, school textbooks, computers, etc.).

Collaborative work, communities of practice, and even societies, according
to Engestrom (1999), Legrand (2001), Leontiev (1978), and Wenger (1998), among
others, involve a motive, rules, a division of labour among members, a mediation of
artefacts, and interaction among the various actors (see Figure 1). In our case, given
a mathematical task, we are interested in the co-construction of students’ knowledge
through the evolution of their representations in the context of an ACODESA method

of teaching.
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Figure 1. Engestrom’s (1999) model adapted to have covariation between variables as object; the various phases of
the ACODESA method of teaching.
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3 LOCAL THEORETICAL FRAMEWORK AND FIRST ELEMENTS OF ARITHMETIC-
ALGEBRAIC THINKING

Given that we are primarily interested in the co-construction of knowledge,
we searched for theoretical elements specific to moments of understanding or to the

epistemic actions of Pontecorvo & Girardet (1993):

a) Higher-level methodological and metacognitive procedures; and

b) explanation procedures used for the interpretation of particular elements of

the task.

To better understand the epistemic actions taking place during the resolution
of a mathematical task, we use Rubinshtein’s (1958) notions (cited in Davidov, 1990, p.
93-4) about the distinction between “visual empirical thought” and “abstract theoretical
thought.” In our project, just as in Rubinshtein and his group’s, we are interested in the
gradual generalization that occurs in a collaborative process of learning. For Davidov
(idem), generalization is a process: “[i]f we mean the process of generalization, then the
child’s transition from a description of the properties of a particular object to finding and
singling them out in a whole class of similar objects is usually indicated” (p. 5).

In the previous century, research about the transition from arithmetic to algebra
focused on the concepts of epistemological obstacle (Vergaud, 1988), cuts (Filloy & Rojano,
1989), and gaps (Herscovics & Linchevski, 1994). Today, a change of paradigm purports
that cognitive difficulties can be overcome (by a majority of students) with appropriate
teaching. The discussion is one of a continuum rather than a rupture (Hitt, Saboya, and
Cortés, 2017a). In this new paradigm, three types of approaches have emerged:

- “Early Algebra,” which is based on a functional thinking approach with “an early

inclusion of algebraic symbols as a valuable tool for early algebraic thinking”

(Carraher, Schliemann, & Brizuela, 2000; Kaput, 1995, among others);
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- “Algebraic nature of arithmetic” (Fujii 2003, among others); and

- a“development of algebraic thought” which acts as a support from which to
delve deeper into arithmetic (Davidov, 1990; Kilpatrick, 2011; Radford, 2011a,
2011b, among others).

The Early Algebra approach prioritizes the use of institutional algebraic symbols
to express covariation between variables and functions (tables of values and algebraic
notations of the type n = n + 3, for example). The second approach is similar to the first,
albeit with a broader focus on the use of algebraic symbols in classical arithmetic tasks
(see below in Section 3.2). However, the third approach relates to the use of general
mathematical notions such as intuition, abstraction, and generalization in a socio-cultural
learning of mathematics.

We situate ourselves in this third, socio-cultural type of approach (Engestréom
1987, 1999; Leontiev, 1978; Voloshinov, 1929/1973) to the learning of mathematics
(Radford’s Theory of Objectification, 2011b). We propose the development of complex
intuitive ideas by considering, for example, mathematical visualization (including “visual
empirical thought” and “abstract theoretical thought,” Rubinshtein, 1958), generalization
(Davidov, 1990; Radford, 2011a), and the promotion of sensitivity to contradiction (Hitt,
2004) in mathematical activity. We worked on these general notions in elementary and
secondary schools; specifically, we worked on the notions of variation and covariation
between variables with the aim of developing arithmetic-algebraic thinking in students.

The notion of arithmetic-algebraic thinking is related to the development of a
cognitive structure that we wish to promote in students, a structuring structure (a habitus)
in the sense of Bourdieu (1980): the conditioning associated with a particular class of
living conditions produces habitus, systems of durable and transposable dispositions,
structured structures predisposed to function as structuring structures (p.88-89).

In our project, we attempt to show how to develop a structuring structure related
to arithmetic-algebraic thinking in a mathematics classroom that is viewed as a micro

society.

31CO-CONSTRUCTION OF KNOWLEDGE AND A SENSITIVITY TO CONTRADICTION
IN THE HISTORY OF MATHEMATICS

Szabd'’s (1960) studies of the history of mathematics detail elements that, during
the Golden Age of the Greek civilization, contributed to the transformation of an empirical-
visual mathematics into a definition-based on an axiomatic deductive science. We highlight

the following elements:
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a) The socio-political progress of the Greeks that allowed for the development
of the art of rhetoric, polemical discussion, and critical thinking;

b) the influence of the philosophy of Parmenides of Elea and his disciple, Zeno
of Elea (and, in particular, his paradoxes), on the Pythagoreans, who had an
interest in mathematics; and

c) a “sensitivity to contradiction” when confronted with mathematical results
developed by the Babylonians and the Egyptians, which did not always agree
(e.g. the area of the disc).

Indeed, Szabo (idem) shows that Thales of Miletus’ results were obtained in an
empirical-visual manner. Szabo (idem) also gives the example of Plato’s (4th century B.C.)
Socratic dialog, Meno, which deals with the doubling of the area of a unit square. At the
end of the dialog, a slave builds a square on the diagonal of the original unit square. It is
easy, visually, to see that the surface area of the new square is double that of the first.

Parmenides’ philosophy on the existence of being excludes non-being and
provides the first reflections on logic and on the law of excluded middle. Szabo believes
Parmenides influenced the Pythagoreans and that they, in turn, influenced mathematics,
creating not only critical thinking but also a sensitivity to contradiction in mathematics.
Szabo states:

The earliest Greek mathematicians, the Pythagoreans, borrowed the method of
indirect demonstration from the Eleatic philosophy; consequently, the creation
of deductive mathematical science can be attributed to the influence of the
Eleatic philosophy. (p. 46)

Unfortunately, many of the Greeks’ documents have been lost. Nevertheless,
historians point to Euclid’s Elements, which record the content of the Pythagoreans’ books
(Books VII, VIII, IX, and X). In Euclid’s Elements, it is common to find theorems proved by
contraposition. Vitrac (2012) confirms that indirect demonstrations (known as reduction
to absurdity) are not uncommon in Euclid’s Elements; they appear in a hundred or so
propositions (p. 1).

One of Szabd’'s main assertions is that the transformation of mathematics into a
deductive science (from the 5th century B.C. to the 3rd century B.C.) was accompanied by
a transformation of mathematics into an anti-illustrative science. The visual demonstration
of the duplication of the surface area of a unit square did not have a place in the new
approach in Euclid’s Elements. In Euclid, the illustration did not play a role in the visual
demonstration process, but rather as an aid to the formal demonstration.

Historians report that the birth of algebra as a discipline was developed by the

Persian al-Khwarizmi (790-850). Hence, while algebra did not originate with the Greeks,
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they did lay the groundwork for critical thinking, mathematical logic, indirect proof, and a
sensitivity to contradiction. This type of thinking is, historically, an important precursor to
the development of algebra.

How can we draw inspiration from the history of mathematics in the classroom?
How can these historical elements of different cultures be integrated into the

mathematics classroom?

3.2 SENSITIVITY TO CONTRADICTION IN THE CONSTRUCTION OF ARITHMETIC-
ALGEBRAIC THINKING

Research from the 1980s offers a glimpse into students’ difficulties in solving
algebraic problems. We consider, as an example, Fujii's (2003) study of the success rates
among elementary and high-school students in the United States and in Japan in solving

the following two problems:

Problem 2. Jon has the following problem
to solve: “Find value(s) for x and y in the

Problem 1. Mary has the following
problem to solve: “Find value(s) for x in the

expression: X + X + x =127 expression: X +y = 16"

She answered in the following manner.

a. 2,55, b.10,1,1; c. 4,4,4
Which of her answer(s) is (are) correct?
(Circle the letter(s) that are correct: a, b, ¢)

He answered in the following manner.

a. 6,10; b. 9,7 c. 8,8
Which of his answer(s) is (are) correct?
(Circle the letter(s) that are correct: a, b, ¢)

State the reason for your selection.

Itis alsoimportant to note that it is rare for students to get both problems correct,
which was also consistent with the data for both countries [USA and Japan]. Let
me select the Athens (GA) 6th, 8th and 9th graders from the American data,
simply because these students have a common educational environment. The
percentages of correct answers for 6th, 8th, and 9th grade are 11.5%, 11.5%
and 5.7% respectively. For Japanese students, the correct response from 5th,
6th, 7th, 8th, 10th and 11th grades are 0%, 3.7%, 9.5%, 10.8%, 18.1% and 24.8%
respectively (Fuijii, 1993).

These problems help distinguish between students with a conception of the role of
avariable in an algebraic expression and those who had formed the concept of a variable.
By analyzing the tasks Fuijii (2003) proposes, we see they had been designed as
assessment tools (to detect the conceptions students had formed). The design of a task
meant to promote learning based on students’ conceptions, however, is a whole other

matter. In what follows, we present two examples of sensitivity to contradiction.
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3.21 First example

Sensitivity to contradiction in the process of solving the following:

a) Solve this inequality: 0.2(0.4x +15) - 0.8x <0.12

b) Verify that x = 10 is an element of the solution set.

In designing this activity, we took into account Brousseau’s (1997) notion of
epistemological obstacle in the learning of decimal numbers: an error that results when
knowledge that, in other situations, had been valid and effective proves to be erroneous
in a new situation. In this case, an error occurs when knowledge about multiplication of
natural numbers is applied to multiplication of decimal numbers. We take advantage of this
error to promote a richer mathematical structure: a sensitivity to contradiction. Here is an

example of a student’s work:

0,2 x 15=0,30

Quelion. 3. Elace de Suinsgalill :
O[04z +15]-082< 042

b)%.:,;é., guce ,/a'..:;uzz’ 2t palisfaili ppacc 240"

(0,‘3) [o,ux10 +|5:] - 08xI0 oL &

wﬁwwﬂow@«:él,/WafﬂM!
o +— GIF - 0,25 0,17
OBAL MR ~ 0, F Lo

or [ 4415] -8 Lol &
0,9 + 0,208 (0,IL &=
440-3 (oL &

g

Vit ol % 2 0,4 MUY T2 2,88

e powr © =288 oM
Lo,u/--v n ’

~ 6oL

b) Verify that the inequality is satisfied for
k=10

Question 3. Study of the inequality:
[(0.2)[0.4x + 1.5] — 0.8x < 0.12

(ga) [o,4x10 +|5:) - 08xI0 {01 &
or [ 4+vJ -8 Lo &>
0,9 + 0,2%0—% (0,IL &)

a) For which values of & is the inequality

satisfied? ot +— GBI - 0L L o2
Bl - 0,3wLo)I L3

x 2 0,4 MUY %At 2,89

Lo 440-3 (oL e
[oy;+eC

~ by

The inequality
is satisfied for

< 2 293
0,31

We note the student made the mistakes anticipated by the researcher. The
student had proposed the solution “st [solution] = 0,12,” but after addressing question
b), the student noticed the contradiction. The student retraced his steps to resolve the
contradiction in part a). He spotted and overcame the cognitive contradiction, even if,
formally, the contradiction remained in item b). This shows the student is sensitive to

contradiction.
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3.2.2 Second example

The Shadow Situation was one of five situations proposed in a month-and-a-half-
long experiment with students in their third year of high-school. The five (sequential)
situations were worked on in connection with the ACODESA method and with the goal of
developing the concepts of covariation between variables and of function (Hitt & Gonzalez-
Martin, 2015; Hitt & Morasse, 2009). The following is a translation of the Shadow Situation
given to students:

Suppose we have a source of light with a height of 6 meters (a streetlight). We consider
the shadow formed when a when a person who is 1.5 meters tall walks down the street. We are
interested in the relationships between the quantities involved.

Are some of the quantities dependent on one another? Which ones?

Select two quantities that depend on one another and describe the phenomenon
% with the various representations you used in previous activities.

Phase 1: Individual work. Two girls work on their own# to understand the task.
One of them represented the situation through a proportional drawing. Starting with
an empirical-visual thought, she found a relationship between the quantities “distance

travelled by the person” and “length of the shadow.”

— QLona K SIOAChLA" SRAG. O
. \ G

Phase 2: Teamwork (Prusak, Hershkowits, & Schwarts, 2013, suggest groups of
two to three). The two girls produce a verbal description of a relationship, an algebraic

expression, and a graphical representation of the situation.

4 Translation of text in top right corner of image: [w]lhen the “walker” will be at 3m from the lamp, his shadow will
be 1m. This means that for every 1m between the “walker [sic] and the lamp, there is 1/3 of a m of shadow. Rule:
N *1/3m (n [sic]: distance in m between the “walker [sic] and the lamp). Table of values, first row: distance; table of
values, second row: shadow (length). Graph, x-axis: distance in M [sic] between [sicl; graph, y-axis: length of the
shadow in M [sic].
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Phase 3: Classroom debate. One group of students failed to find an answer due

to algebraic errors. Upon seeing the two girls’ results, this group manages to construct an

algebraic approach by using similar triangles.

Phase 4: Self-reflection. The instructor collects everything the students produced

and re-assigns them the situation as homework, this time with the instruction to re-create

the work done in class. The following is what one of the girls (mentioned above) produced

as a reconstruction of what had been discussed in class:

C’s reconstruction of the work done
with her team

C’s reconstruction of the classroom debate

) ()]

She reconstructed with no difficulty what she had done numerically and visually

with her team-mate. Unfortunately, when she wanted to reconstruct the boys’ algebraic

process, she made a mistake and failed to come up with a solution. In her drawing (the one

on the right), she expressed a feeling of unease in the face of a contradiction she couldn’t

overcome. This shows she had formed a sensitivity to contradiction. From a cognitive

standpoint, a sensitivity to contradiction is an awareness of contradiction accompanied by

a sense of unease, and its resolution by a sense of happiness.

These examples demonstrate the

importance of students’ spontaneous

representations. Given these findings on students’ spontaneous representations, Hitt and

Quiroz (2019) proposed the notion of socially-constructed representation, one which

materializes through the evolution of students’ functional-spontaneous representation as

it emerges in individual work and is then discussed in a team, in large groups, and in self-

reflective work. According to Hitt and Quiroz (2019, p. 79),
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[a] socially-constructed representation is one that emerges in individuals when
given a non-routine activity; the actions in the interaction with the situation have
functional (mental, oral, kinesthetic, schematic) characteristics and are related
to a spontaneous (external) representation. The representation is functional
in the sense that the student needs to make sense of the situation, and it is
spontaneous because it naturally occurs in an attempt to understand and solve
the non-routine situation. [Translation]

4 THE INVESTIGATIVE SITUATION (THE TASK): KEY ELEMENT IN THE CO-
CONSTRUCTION OF MATHEMATICAL KNOWLEDGE

The theories of didactical situations (Brousseau, 1998), of “problem solving” (Mason,

Burton, & Stacey, 1982; Schoenfeld, 1985), and of Realistic Mathematical Education from

Freudenthal (1991) have prompted changes in curricula worldwide. There is a break from the

classical approach - that is, from “definition-theorem-exercises and problems” instruction.

Situational problems, problems in general, and contextualized problems have a fundamental

role to play in the new approach. In light of these theories, task design is viewed as central

for overcoming cognitive barriers. A new era came for the organization and role of the task

in mathematics instruction, in situational problems related to creativity, and in mathematical

modelling (Blum, Galbraith, Henn, & Niss, 2007; Hitt & Gonzalez-Martin, 2015; Hitt, Saboya, &
Cortés, 2017; Hitt & Quiroz 2019; Lesh & Zawojewski, 2007; Margolinas, 2013).

The activities we designed are related to the ACODESA teaching method in a socio-

cultural approach to mathematics instruction. We call our activities “investigative situations”

An investigative situation consists of different tasks that follow the steps

of the ACODESA method. The tasks attempt to promote, first and foremost,

the emergence of non-institutional or institutional representations, empirical-

visual thinking related to diversified thinking (that is, divergent thinking),

conjecture, prediction, and validation. In second and third stages (teamwork

and classroom debates), we try to promote abstract thinking that includes

sensitivity to contradiction as well as an evolved version of the representations

and characteristics formed in the first stage. In a fourth stage, students re-

construct what had been done in class so as to solidify the knowledge they had

formed. Finally, the teacher reviews students’ various solutions and presents the

institutional position vis-a-vis the content considered in the situation. [Translation]

The design of investigative situations follows an organization such as that outlined
in Hitt, Saboya, and Cortés (2017b).

41 VARIATION AND COVARIATION BETWEEN VARIABLES: AN EXAMPLE WITH
POLYGONAL NUMBERS

We now present the first step of an investigative situation that involves polygonal

numbers, and which is targeted towards students in their first year of high-school. This
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step consisted of five questions to be solved with paper and pencil. The second step had
students use technology to validate their conjectures. In total, the situation was eight
pages long. The following is a translation from French:

Step 1 (Individual work, followed by teamwork; paper-and-pencil approach)
Along, long, long, long time ago (around 520 B.C.), a mathematician called Pythagoras founded
a school on an island in ancient Greece. He and his students were fascinated by both numbers
and geometry. One of their ideas consisted of representing numbers by geometric figures.
They called these polygonal numbers. For example, they noticed that certain numbers could be
represented by triangles. Thus, 1, 3, 6, and 10 are the first four triangular numbers since they
can be represented by points arranged in triangles as follows:

Triangular

. Triangular Triangular number 4
Triangular number 2 number 3 °
number 1

o (1
[ ] o0 000
[ ] (1 ] 000 0000
1 3 6 10

1)  Observe these numbers carefully. What is the fifth triangular number? Represent it.
Explain how you did this.

2) How do you think a triangular number is constructed? What do you observe?

3) What is the 11th triangular number? Explain how you found its value.

4)  You must write a SHORT email to a friend describing how to calculate the triangular
number 83. Describe what you would write. YOU DON'T HAVE TO DO ANY
CALCULATIONS!

5) And how would you calculate any triangular number? (We want a SHORT message
here as well.)

411 Teams’ Responses to Questions 1,2, and 3

In this first step, we wanted to promote empirical-visual thinking (Rubinshstein,
1973) and generalization (Davidov, 1990; Radford, 2011). Students (in teams G1 and G3)
naturally shifted from a visual approach to an arithmetic procedure (an epistemic action).

For example, to calculate T_, they wrote 1+2+3+4+5+6+7+8+9+10+11.

11’

14+2+3+4+5+6+7+8+9+10+11

Team G2 first moved from a concrete visual approach to a more general visual
approach and then to an arithmetic procedure (an epistemic action). Hence, for T
wrote 11+10+9+8+7+6+5+4+3+2+1.

they

1"’
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11+10+9+8+7+5+4+3+2+1

We note the abandonment of the iconic representation by one student (from team
G4) who, during the classroom debate, switched from a detached visual approach to the
polygonal configurations to an iterative calculation which he had not discussed with his
teammates (what Rubinshtein would term theoretical abstract thinking). Team G4 used
this final strategy, along with Excel, to tackle the fifth question of the second step of the

investigative situation.

This shift shows the importance of teamwork and of Yan’s reflection as he
organized his thoughts (in what Vygotsky, 1932/1962, would call inner speech) so as to
communicate them to the group (Voloshinov’s construction of sign). Yan needed to make

himself understood by the rest of the class.

fP por (Q. catq:\s "‘P:l\g
LP=2| |Df:@
7a=2%
8p = b
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4.1.2 Team Responses to Questions 4 and 5 and First Classroom Debate

The following are the responses given by each team in the first classroom debate:

Team’s response to question 4 Team’s response to question 5

G1 We add all the numbers from 1+2+3... all | We add all the numbers from 1+2+3... all the
the way to the number of points on the | way to the number of points on the side.
side.
G2 Add up the numbers from 1 to 83. You add up the numbers from there?

G3 You have to do 83+82+81... all the way to 1. | Calculate the last diagonal column and
calculate by doing -1 to the number. E.g. 15th,
15+14+13... etc.

G4 You have to do; 1+2+3+4+5+6+7+8... +83 | You put the same number on the other sides
and this will give you the answer. and then you add up 1+2+3+4+5+6... until
you get to your number and your answer is
the triangular number.
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During the classroom debate, the researcher asked what answers had been
written in response to question 5 (see responses above), which asked for a short message
describing how to find any triangular number. The students first suggested the sum “1+2+3
all the way to your number.” The researcher intervened: how can | write a number | don’t
know? Different proposals emerged. The first was to write “?” ; afterwards, they proposed

x” or “y.” The teacher asked whether a heart could be used: “v.” One student replied that

they could use anything that wasn’'t a number.

The students transitioned from empirical-visual thinking to abstract arithmetic-
algebraic thought. The variable was first expressed in words: “all the way to your number.”

Then, it was expressed as “?,” then, as “x” or “y,” and, finally: “we can use anything that

isn't a number.”

Output produced by team G4 (during teamwork and during the classroom debate)
Teamwork and Surprise at finding a | General computation Generalization
spontaneous decimal number as T, | of a triangular number | obtained through
generalization and team discussion | presented to the rest classroom debate

towards generalization | of the class
(with Excel)
! 160
(g3:0)- 2= 412 e
(oo =T
Uix ¥3 = ( i
X x oo =

We note that each abstraction came with a certain type of generalization. The
processes of abstraction were of the following types: visual abstraction, arithmetic
abstraction, emergence of the concept of a variable, emergence of the concept of

covariation between variables.

41.3 Forty-five Days Later: Phase of Self-Reflection (Reconstruction)

During this step, Yan, the student who found an algebraic expression for triangular
numbers, tried to remember his formula but got it wrong. He wrote: (Row*2)-1=y and
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(Row*y=triangular number. During the pentagonal number activity which we had given
him as a challenge, he wrote that Row*(Row + (Row * 0.5 - 0.5)) = pentagonal number. He
found this expression by using the same strategy he had used 45 days beforehand to deal
. . . . . . . s n(3n-1)
with triangular numbers. This expression is equivalent to the institutional one: ;n ==
During this process of self-reflection, another student obtained the following in
response to the question about triangular numbers: Odd number: (row + 1) + 2 * row
= triangular number. This expression is equivalent to (when restricted to odd

numbers).

5 CONCLUSIONS

In this paper, we wanted to show the various elements needed for the construction
of arithmetic-algebraic thinking. Building on a few ideas from the history of mathematics,
from a socio-cultural theory of learning, and from the ACODESA teaching method, we have
shown that for the construction of arithmetic-algebraic thinking, various elements of the
mathematics classroom need to be taken into account: the role of the task (investigative
situations) in the acquisition of knowledge, communication in the classroom, mathematical
visualization, the role of non-institutional and institutional representations, generalization,
conjecture, sensitivity to contradiction, validation, and proof.

Our approach seeks to develop and enrich an association between arithmetic and
algebra (a habitus) to promote the construction of a structuring structure, in the sense of
Bourdieu (1980), that is related to arithmetic-algebraic thinking and which supports not
only algebra, but also an enrichment of the cognitive structure of arithmetic tasks.

Further, we observed the emergence of the concepts of variable and of covariation
between variables through the process of co-construction of knowledge.

The results of our studies have encouraged us to experiment new investigative
situations (following the ACODESA method) in grade 6 classrooms. So far, we have
suggested five investigative situations of different types and which require electronic
tablets: Marcel’s Restaurant, The El Dorado Jewelry Shop, Windows, The Garden and the
Pumpkins, and Rectangles and Disks. We are currently analyzing the results.
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