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PREFACE

The insertion of new and enhanced materials based on materials belonging to 

the Nano scale in the day-by-day has growth up in a silent way.  In part, a number of 

works in the nanotechnology stemming of theoretical research using Density Functional 

Theory (DFT) and sophisticated simulation methods; another part is associated to the 

protected technologies associated to the military and patented nanomaterial and its 

process. In this sense, open access to recent aspects on the nanostructures application 

and properties can be reached in this book. Here, an interesting set of chapters gives 

opportunity of access texts that reach process and processing of nanostructures, 

applications of nanotechnology, advanced techniques to theoretical development. A broad 

set of nanostructures are here covered such as, nanocrystal, superficial nanograins, inner 

microstructures with nanograins, nanoaggregates, nanoshells, nanotubes, nanoflowers, 

nanoroad, nanosheets, Also, reveals new investigations areas as grainboundary of 

nanograins in ceramics and metals. A great number of software has been used as a tool 

of development of Science and Technologies for nanotechnology COMSOL Multiphysics 

5.2. Phenomena and properties has been investigated by recent or classical techniques 

of materials characterization as Localized Surface Plasmon Resonance (LSPR), X-ray 

photoelectron spectroscopy (XPS), Field Emission Gun Scanning Electron Microscopy 

(FEG-SEM) with Energy Dispersive Spectroscopy (EDS), Raman Scattering Spectroscopy 

(RSS), X ray diffraction (XRD), 57Fe Mössbauer spectroscopy, UV-vis spectroscopy, 

dynamic light scattering (DLS), Atomic Force Microscopy (AFM), and Field Emission 

Gun Scanning Electron Microscopy (FEG-SEM). In this sense, collections of spectra 

from Mössbauer spectroscopy, UV-vis spectroscopy and Infrared spectroscopy can be 

found. As a matter of fact, some chapter’s item can be seemed as specific protocols for 

synthesis, preparations and measurements in the nanotechnology.   

               I hope you enjoy your reading.

Prof. Dr. Marcos Augusto Lima Nobre
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CHAPTER 7

FORMATION OF METAL NANOPARTICLES BY SPUTTER 
DEPOSITION ON UNCD FILMS BY NPIII INSIDE 

CONDUCTIVE TUBES
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ABSTRACT: Surface modification of 
ultrananocrystalline diamond (UNCD) films by 
Nitrogen Plasma Immersion Ion Implantation 
(NPIII) using conductive tubes was studied. 
UNCD films were deposited on titanium 
substrates by CVD process using a hot 
filament reactor. The UNCD films were treated 
by NPIII inside stainless steel metallic tubes. 
The tubes, with 150 mm of length and different 
diameters, containing the UNCD films were 
placed in the interior of vacuum chamber 
of 600 liters. Field Emission Gun Scanning 
Electron Microscopy (FEG-SEM) with Energy 
Dispersive Spectroscopy (EDS) auxiliary, 
X-Ray Diffraction (XRD), Raman Scattering 
Spectroscopy (RSS), and X-ray Photoelectron 
Spectroscopy (XPS) were used to investigate 
the effect of NPIII treatment on UNCD films. 
The results showed that the NPIII treatment 
changed the surface morphology of UNCD 
films, increased the degree of disorder and 
the structural defects, and the formation of 
metallic nanoparticles by sputter deposition 
of the materials from the conductive tubes. 
Surface analysis have also demonstrated 
substantial dependence of NPIII with the 
conductive tubes diameter. For the UNCD film 
treatment by NPIII inside tube with diameter 
of 110 mm (T110), there was formation of 
metal oxide and nitride layers on the surface. 
For the treatment carried out inside the tube 
with a diameter of 40 mm (T40), there was 
implantation of metallic particles, indicating 
that the surface of the UNCD films was 
completely covered by iron (Feº).
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1 INTRODUCTION

Plasma immersion ion implantation (PIII) is a well-known technique used for the 

three-dimensional surface modification of materials by ion implantation [1]. Recently, new 

developments in PIII using conductive tubes have been attained [2]. Both moderate (< 450 
ºC) and high temperature (> 700 ºC), PIII inside tubes are now possible. Tube temperature 

is dependent on the diameter when hollow cathode plasma is produced inside it for PIII 

treatments of the tube walls, components or samples. Hollow cathodes are also providing 

plasmas for materials surface modifications [3], in particular, using PIII method in tubular 

or concave geometry samples or workpieces [4]. UNCD films have been the subject of 

large interest in the scientific community, motivated by their exceptional properties for 

tribological [5], mechanical [6, 7], biomedical [8] and electronic [9] applications. This 

interest is especially due to their high smoothness, electron field emissity [10], as well as 

their unique capability to incorporate n-type dopants [11, 12]. Nitrogen atoms, adsorbed 

in diamond, upon equilibration at elevated temperatures tend to enrich at the surface and 

at grain boundaries. Adsorbed nitrogen atoms on UNCD surfaces strongly affect their 

physico-chemical properties and phenomena as surface energy, morphology, equilibrium 

shape, surface diffusion and sintering, adhesion and wear, surface reactivity and corrosion, 

metal-gas reactions and catalytic reactions [13]. In addition, adsorption at grain boundaries 

strongly influences materials properties, and the adsorbed nitrogen atoms are of special 

interest as effective semiconductor. Nitrogen incorporation in the UNCD structure is 

recognized to affect most of the film properties, including changes in the tribological 

behavior, molecular structure and chemical bonds. Nitrogen incorporation results in the 

enhanced adhesion strength of UNCD films by increasing sp2 bonds and subsequently 

relaxing residual stress in the films [14]. In addition, the tribological performance of UNCD 

films can be improved by nitrogen incorporation because promotes the graphitization of 

the films and could be used in protective and coating technologies.

In this study, we have been exploring NPIII treatment using different size stainless 

steel (SS)304 tubes with diameters of 110 mm (T110) and 40 mm (T40) with length of 

150 mm for the surface modification of UNCD film. PIII is a powerful tool for adding 

impurities to a host material. We attempt to elucidate the effects of NPIII treatment on 

the structural, morphological, and chemical properties of UNCD films.  The results shows 

that the structure of UNCD film surface was modified by NPIII treatments and metallic 

nanoparticles were implanted by sputter deposition. This treatment can certainly include 
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other species that would give UNCD films with other properties and applications including 

enhanced magnetic UNCD. 

2 EXPERIMENTAL

2.1 SUBSTRATE PRETREATMENT

To improve the adhesion of the diamond film on the titanium substrate and the 

nucleation density during growth of the films, we performed a pre-treatment on the surface 

of substrates, which consists of a mechanical incision by blasting with glass beads, whose 

main objective is to increase roughness [15]. After this, the substrates (15 mm x 15 mm x 

1 mm) were cleaned with acetone in an ultrasonic bath in order to remove grease or any 

other contaminants. Soon after, the substrates were prepared for growth by plating with 

nanometric diamond powder in ultrasonic hexane bath during 60 minutes to enhance 

diamond nucleation.

2.2 UNCD FILMS PRODUCTION

Ultrananocrystalline diamond (UNCD) films were produced on titanium substrate 

using Hot Filament Chemical Vapor Deposition (HFCVD) technique. The films were 

carried out using an experimental system from the Associated Laboratory of Sensors 

and Materials/Group of Diamond and Related Materials at National Institute for Space 

Research. The experimental setup is composed of the reactor made of a stainless steel 

cylindrical shape chamber with Pyrex windows and copper coil through which cooling 

water circulates. The internal layout of the reactor consists of five filament of tungsten 

with diameter of 125 µm supported by two brackets of molybdenum and a gas inlet tube 

located just above the region of the filaments. The distance between the filaments and 

the substrate was 5 mm and the deposition time was 7 h. The chemical process included 

treatments in CH4/H2/Ar gases with 9 vol.% hydrogen, 1 vol.% methane and 90 vol.% argon 

at a total flow of 200 sccm (standard centimeter cubic per second). The temperature 

and the pressure inside the reactor were maintained at 750 °C and 30 Torr, respectively. 

Details of deposition set-up and procedure have been described earlier [16]

2.3 UNCD FILMS TREATMENT BY NPIII INSIDE CONDUCTIVE TUBES

UNCD films were treated during 120 min by nitrogen plasma immersion ion 

implantation (NPIII) inside conductive tubes, with 150 mm in length and different diameters. 

The NPIII treatments employed here was carried out using an experimental system from 
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the Associated Laboratory of Plasma at National Institute for Space Research. It consists 

of a cylindrical vacuum chamber of 600 liters with a vacuum system composed of a 

mechanical, a root and a diffusion pumps. Its detailed description is found in some recent 

published paper of our research group [17], with a difference that the SS pipes were 

connected directly to the high voltage pulser and no additional plasma source was used. 

Stainless steel (SS) tubes were placed in the interior of cylindrical vacuum chamber and 

were isolated from the ground by a set of dielectric insulators (corrugated alumina tubes, 

then a glass plate, and a Makor support and alumina tubings), as can be seen in Fig.1 (a) 

and 1(b). In this set-up, samples of UNCD films fixed to the inside wall of the tube were 

bombarded with accelerated nitrogen ions. The temperature distribution at the end of the 

treatment was measured with an infrared pyrometer (Mikron, model MK-90Q), looking at 

the middle positions of the tubes. The NPIII treatment conditions are shown in Table 1. 

Fig. 1. Stainless steel tubes with diameters of (a) 110 mm (T110) and (b) 40 mm (T40) that were used to perform NPIII 
treatments on UNCD films surface.

                                  (a) Pulser - on                                                 (b) Pulser -  on

As can be seen from Table I, the nitrogen pressure used in T110 was about 3.0 

Pa. The pulser was operated at pulse length of 30µs and at a frequency of 1 kHz. Using 

peak voltages of 3 kV and peak currents of 3 A, the implantation condition led to the tube 

temperature in the order of 380ºC, in this case of SS304 tube with 110 mm Ø and both 

sides of the tube open (Fig. 1(a)). 

Table I. Conditions of NPIII treatments on UNCD films surface inside T110 and T40 size conductive tubes.

NPIII

Tube 
Diameter 

Size 
(mm)

Peak 
Pulse 

Current 
(A)

Peak 
Pulse 

Voltage 
(kV)

Frequency 
(kHz)

Final 
Temperature 

(oC)

Argon 
Time 
(min)

Pulse 
Length 

(μs)

Pressure 
of 

Nitrogen 
(Pa)

T110 110 3.0 3.0 1.0 380 10 30 3.0

T40 40 2.0 2.7 3.0 780 10 30 3.0
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In case T40, a 40 mm Ø SS304 tube was closed in one end, using a thin sheet 

of SS304, as can be seen in Fig.1 (b).  This resulted supposedly in much higher density 

plasma inside the tube. The operation condition was now: nitrogen pressure of 3.0 Pa, 

pulse length of 30 µs, at a frequency of 3 kHz, reaching peak voltage of 2.7 kV and 

peak pulse current of 2.0 A. The resultant plasma showed much higher light emission 

and soon after turning on the pulser, the tube started glowing due to the very high 

temperatures reached there. 

2.4 SURFACE CHARACTERIZATION SYSTEMS                                                                

The analysis of crystallinity was performed by X-Ray Diffraction (XRD) in a Philips 

3410 diffractometer in the Seeman-Bolin 2θ scanning mode using Cu Kα radiation 

(λ=0.154056nm). The evaluations of the morphology and the content of various elements 

in the UNCD films were investigated before and after the NPIII treatment, using Field 

Emission Gun Scanning Electron Microscopy (FEG-SEM) – Hitachi microscope model SU-

70 (Tescan MIRA3) with auxiliary Energy Dispersive Spectroscopy (EDS) at an operating 

voltage of 25 kV. The quality of UNCD films and the existence of carbon layer was evaluated 

by Raman Scattering Spectroscopy (RSS) – Labram HR evolution – Horiba Scientific with 

a 514 nm excitation light source by argon ion laser. The chemical bonding states of the 

UNCD films before and after NPIII treatment were analyzed using X-ray Photoelectron 

Spectroscopy (XPS) - Thermos Scientific K-Alpha with monochromatic Al-Kα radiation 

(1486.6 eV). The binding energies in the spectra were calibrated with carbon (C1s 284.8 

eV) peak. Instrument base pressure was about 10-10 Torr and high-resolution spectra were 

collected with 40 eV pass energy. The surface samples were sputter cleaned prior to 

analysis using a 4 kV argon ion beam by 1200 seconds. Spectra were analyzed using 

casaXPS software (version 2.3.15). Gaussian (30%)-Lorentzian (70%), defined in CasaXPS 

as GL (30), profiles were used for each component and a standard Shirley background 

are used for all reference samples spectra.

3 RESULTS AND DISCUSSION

3.1 STRUCTURAL SAMPLES CHARATERIZATION 

X-ray diffraction (XRD) analysis was carried out to investigate the structural 

properties of titanium substrate, and UNCD films, before and after NPIII treatments, in 

T110 and T40 tubes, and the results are shown in Fig. 2. It can be observed that the Ti 

substrate have a-phase – hexagonal close-packed (hcp) crystalline structure. The 35º, 
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38º, 40.1º, and 52.8º, diffraction peaks can be observed relative to the titanium diffraction 

planes (100), (002), (101), (102), respectively (JCPDS 89-5009) [18].

Fig. 2. XRD pattern of Ti substrate, UNCD film before and after NPIII treatment in T110 and T40.

From Fig. 2, it can also be found that for the UNCD films before NPIII treatment, 

the typical carbon (111) diffraction plane relative to the peak at 44º appears little 

evidence of low diamond crystallinity.  The line broadening of the diamond peak 

suggests a ballaslike morphology. In addition, apart from the carbon peaks, the most 

usual TiC formation is clear, related to (111), (200), (220), and (311) planes. The XRD 

of UNCD films after NPIII treatment in T110 tube contains peaks that correspond to 

α-Fe (110), (200), and (211) planes (JCPDS No. 06-0696) as resulted from the metal 

nanoparticles by sputter deposition. It can be seen then that the TiC peaks have 

disappeared and new peaks have emerged as nitride phase. One can verify the presence 

of the peaks (111), (200), (220) and (311) for thin TiN film of NaCl-like structure (cubic 

face centered), with the N atoms replacing the carbon atoms. 

The XRD pattern of the UNCD film after NPIII in T40 tube contains peaks that correspond 

to α-Fe and ɤ-Fe that are relatively strong due to intense sputter deposition from the 

SS304 tube. UNCD film with metal nanoparticles implantation was obtained, which 
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gives it new prospective applications. However, no diffraction peaks relative to diamond 

is present anymore in this sample. Therefore, it suggests the presence of high defect 

density induced by the NPIII, in the case of small diameter tube, providing higher intensity 

sputter deposition of the metal nanoparticles and higher temperature (780ºC). 

3.2 FIELD EMISSION GUN SCANNING ELECTRON MICROSCOPY (FEG-SEM) WITH 

AUXILIARY ENERGY DISPERSIVE SPECTROSCOPY (EDS)

Surface morphologies and EDS analysis of the UNCD film before and after 

NPIII treatments in T110 and T40 tubes, analyzed by FEG-SEM, are shown in Fig. 3.  It 

can be seen from images, that whilst the UNCD film shows evidence of low crystallinity 

at this length scale. From the top-view SEM images of the UNCD film before and after 

NPIII treatment in T110 tube, it can be observed that the structures are similar, as 

shown in Fig. 3(a) and 3(b).  The films presented extremely fine-grained coalescent 

crystallites, uniformly distributed on the surface of the Ti substrate and abrupt grain 

boundaries, presenting non-columnar growth structure of a ballaslike morphology. The 

grains tend to form agglomerates that become more pronounced than those formed 

after NPIII treatment in T110 tube. These agglomerate sizes are in the range of 42 and 

48 nm of diameter, showing grains with an undefined texture for this 

image magnification. Yang et al. observed the cauliflower or ball-shaped diamond 

formation, the so-called CVD balls diamond, for argon concentrations above 30%v 

[19].  They discussed that balls diamond is nearly a pure diamond with strongly 

twinned microstructure that grows at the transition from faceted diamond to graphite 

depositions. This morphology is clearly observed in these images. In Fig. 3(b), the 

UNCD film after NPIII treatment in T110 tube present an appreciable decrease in the 

carbon concentration and the simultaneous implantation of the nitrogen, oxygen and 

deposition of metallic nanoparticles such as Fe, Cr and Ni derivation of the stainless 

steel tube.  In Fig. 3(c), the UNCD film after NPIII treatment in T40 tube shows that 

one-dimensional wire structures are uniformly distributed on the surface of the sample 

and no diamond structure is seen on the surface. It was estimated that the Fe content 

in the UNCD is around 73.0 wt% by EDS. It was because of the presence of these Fe 

atoms, that the UNCD film became magnetic. These results are a consequence of the 

high temperature (780ºC) in smaller diameter tubes used during the NPIII treatment 

that significantly affect the properties of the UNCD films and it is very important in the 

transformation process from UNCD film to diamond/metals composite.
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Fig. 3. FEG-SEM images and EDS analysis of (a) UNCD films deposited on titanium substrate, (b) UNCD fims treated 
by NPIII in T110 and (c) UNCD fims treated by NPIII in T40.

(a)

 UNCD 

(b)

 UNCD T110 

(c)

Other elements (Si and Mo) shown in Fig. 3(c) are probably from surface 

contamination. Based on these results, it is evident that both types of NPIII treatments 

of the UNCD film result in a very intense surface enrichment of high purity metal 
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nanoparticles in the surface layer by sputter deposition of these metallic species of the 

stainless steel coming from the conductive tube. The metal nanoparticles in both cases 

are characterized by a transfer of electron charge from metallic tube used for the NPIII 

treatment, which is more pronounced in the case of the T40 tube. 

3.3 RAMAN SCATTERING SPECTROSCOPY (RSS)

Raman spectroscopy was used to examine the property of UNCD films before and 

after NPIII treatments in conductive tubes. Figure 4 shows the measured Raman spectra 

of the UNCD film before and after NPIII treatment in T110 tube, exhibiting broad bands (D 

and G) located at approximately 1358 cm-1 and 1570 cm-1, which is probably due to surface 

graphitic structure. G band presence is relative to crystalline graphite impurities and D 

band represents the presence of disordered graphite. The peak at ~1150 cm-1 which is 

observed in our visible Raman spectra, is attributed as transpolyacetylene segments at 

the grain boundaries [22] and commonly assigned as to the vibrations of C sp3 atoms for 

the UNCD film. Recent works argue that the 1150 cm-1 band is due to a deformation mode 

of the CHx bonds present in the diamond nanoparticles, which showed that an increase of 

C–H bonds was associated with decreasing in the C–C bonds in the morphology transition 

from faceted to ballaslike diamond. This conclusion also agrees with theoretical diamond 

studies proposing that CHx species have a more important role in the growth environment 

of ballaslike UNCD compared to faceted diamond films [20]. 

In the second-order Raman spectra, it is possible to observe the band at 2500 to 

3500 cm-1 attributed to transpolyacetylene (TPA). The TPA (poly-CHx) is as alternate chain 

of sp2 carbon atoms, with a single hydrogen bonded to each carbon atom. It is interesting 

to note that the intensity of this band decreases in the UNCD film after NPIII treatment 

in T110. The decrease in the intensity of these bands is accompanied by a frequency 

shift, as can be seen in Table II. This table shows the results of the positions, area, width 

(FWHM- full width at half-maximum), height and integrated intensity ratio of the D and G 

bands (ID/IG). ID/IG is proportional to the presence of ‘disordered’ carbon and inversely 

proportional to graphite crystal size. This is because both the electron and energy transfer 

mechanisms could result in the reduction of the absorption intensity of the UNCD film 

after NPIII treatment in T110 tube. The morphologic changes observed by SEM/EDS 

analysis are also reflected on the Raman spectra features. The evidence of nitrogen and 

metal nanoparticles incorporations was taken due to great decrease in the intensity of 

the peaks D and G, besides a pronounced enlargement accompanied with a shift to lower 

wavenumbers. The intensity of the UNCD film peaks after NPIII treatment in T110 tube 
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greatly decreased, accompanied with a much wider peak. Due to the fact that metallic ions 

are heavier in mass, when the implanted Fe ions sit in the diamond lattice (whether the 

one replace the carbon atom or relax in interstitial sites in diamond lattice), it will introduce 

strain in the UNCD films. Hence, the strain in the UNCD film after NPIII treatment and the 

decreasing of the intensity indicate clearly that the structure was changed.

Fig. 4. Raman spectra of UNCD film before and after NPIII treatment in T110 and T40 tubes. The figures inset 
demonstrate the fitting Raman spectra of the samples.
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Table II. Position, area, width, height and ID/IG ratio of UNCD film and UNCD film treated by NPIII in T110 and T40 tubes.

514 nm Position (cm-1) Area (x103) Width (cm-1) Height ID/IG

UNCD

  1155.8 146.3 80.0 1458.5

1.03 D 1358.0 165.4 184.5 7153.5

G 1570.1 967.7 111.2 6946.6

NPIII
T110

  1147.4 4.65 109.7 33.8

1.07 D 1357.5 49.1 183.4 213.7

G 1573.5 28.5 114.28 199.3

NPIII
T40

818.6 17.8 249.4 56.9

For UNCD film after NPIII treatment in T40 tube, the structure D and G spectral line 

is not observed in the Raman shift, suggesting that there is formation of film without carbon 

phase, which evidently covered the entire surface of the sample. NPIII changed significantly 

the surface morphologies and characteristics of the Raman peaks. It is a consequence of high 

concentration of nitrogen implanted into the sample, due to an increase of temperature and 

to the high ion flux bombardment on the surface, which resulted from an increase of plasma 

density. One Raman-active broader and asymmetric band at the lower frequency side was 

observed at about 820 cm-1. It was attributed to the stretching mode vibrations of heavy ions. 

Metal oxides do not always occur in a crystalline form. When in an amorphous state, the Raman 

bands are quite broad. The assumption is that in the amorphous form, there is a distortion 

of interatomic bond angles. Long-range order is lost, but nearest neighbor interactions are 

affected to shift a particular vibrational frequency. This happens because there is a population 

of such distortions, and the observed band was broad (width ~250 cm-1), as can be seen in 

table II. There is often an interest in engineering materials of particular dimensions, especially 

in nanotechnology. When the dimensions of crystals get small enough, the phonons experience 

“quantum confinement”. UNCD films can be composed with additional metals, especially 

chromium, which has the benefit of “passivating” the surface. The Raman bands of the 

amorphous, supported surface oxide species sharpen and simultaneously shift in frequency 

at elevated temperatures due to the high ion flux bombardment of nitrogen. High amount of 

heavy ions sputter deposited from conductive tubes during NPIII treatment of the films. Thus, 

ion irradiation may be able to alter the surfaces of UNCD films. Several works have been 

developed in the study of Raman spectroscopy conduted on different UNCD materials with 

nitrogen in the gas during the synthesis, including studies by Vlasov, Arenal, Ikeda et al [21-23], 

but the present work is pioneer in the treatement of UNCD films in conductive tubes by NPIII 

with metal nanoparticle sputter deposition. Thus, the amount or size of the metal nanoparticles 

supported on the substrates could be appropriately controlled by NPIII parameters.



The Great World of Nanotechnology Vol II Chapter 7 103

3.4 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) ANALYSIS

Until here, we have shown and discussed the morphology and structure of the 

film and their modifications performed by NPIII. However, there are other important points 

related to NPIII to take into account, as the atomic configuration and quantification of 

the nitrogen atoms and metal nanoparticle in the surface. Several groups measured for 

instance the sp2 and sp3 ratio in UNCD films for the investigation of the CxNx phases, and 

in order to elucidate the nitrogen bonding environments, have employed XPS technique 

[24, 25]. Fig. 5 show the XPS wide-large spectra of the UNCD films before and after NPIII 

treatment in T110 and T40 tubes, and atomic concentration of their components, after 45 

minutes etching time. XPS analysis revealed the presence of C (70.63 at%) and O (28.8 

at%) in UNCD film as produced.

Fig. 5.  XPS wide-scan spectra of the UNCD film before and after NPIII treatment in T110 and T40 tubes.

The spectra for UNCD films, after NPIII treatment in T110 and T40 tubes, showed 

similar characteristic confirming the nitrogen incorporation and metal nanoparticle sputter 

deposition. However, elemental composition was been significantly changed. UNCD films 

treated in T110 tube presented high atomic concentration of Fe 2p (49.17 at%) and Cr 2p 

(34.92at%). These metal elements are typically involved in the formation of a chromium-
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rich passive layer on the top surface. UNCD film after NPIII treatment in T40 tube had 

more of the iron-rich metallic layer relative to Fe 2p (86.10 at%) region. 

Fig. 6 shows the high-resolution XPS spectra of UNCD films before and after NPIII 

treatment in conductive tubes. In Fig. 6(a), the XPS C 1s spectrum of UNCD film before NPIII 

treatment was deconvoluted to four components with the binding energies of 284.5 eV, 285.3 

eV, 287.5 eV, and 288.8 eV. The first component is assigned to the unoccupied π* bond, which 

is characteristic of the sp2 C=C bond (14.12 at%). The second component is due to σ* bond, 

which is characteristic of the C-C bond for carbon tetrahedral sp3 (74.67 at%). The components 

with higher binding energy, observed between the π* and σ* bonds, are characteristic of C-H 

bond (2.73 at%), and carboxyl group C=O (8.49 at%), respectively. These bonds originate 

from the absorption of hydrocarbon to the dangling bonds at grain boundaries and oxygen 

residual gas during the film deposition process [26, 27]. For UNCD film after NPIII treatment 

in T110 tube (UNCD/T110), one can see that, the component with higher binding energy (288.1 

eV) is characteristic of C=N (16.80 at%), and the peak with smaller binding energy (283.3 

eV) can be assigned to Fe-C and/or Cr-C bonds (6.42 at%). These peaks are features mainly 

originating from the nitrogen incorporation and metal nanoparticle sputter deposition from 

T110. The other two peaks indicate the increase of the amount of sp2 C=C bond (32.42 at%) 

and the decrease of C-C bond for carbon tetrahedral sp3 (44.35 at%). The presence of lower 

intensity C1s peak implies the increasing of the formation and disorderness of sp2-bonded 

carbon phase as a result of the incorporation of nitrogen into UNCD film that have also been-

illustrated in Raman spectra (Fig. 4). Another important aspect is the reduction of crystallinity 

and the increasing of graphitization of the UNCD/T110. 

For UNCD film treated in T40 tube, the amounts of sp2 C=C bond (65.28 at%) and 

C-metal (12.83 at%) are increased as compared to the UNCD film treated in T110 tube, as 

can be seen in Fig. 6 (a). The peaks at 288.6 eV and 286.3 eV indicates the amount of the 

C=O (7.38 at%) and C-O (14.51 at%) bonding in the surface. 

In Fig 6 (b), the corresponding N1S band shows asymmetry and involves at least three 

peaks near 396.9 eV, 397.8 eV, and 398.0 eV for the UNCD film treated in T110 tube. They 

indicate CrN (34.13 at%), FeN (19.89 at%), and C-Nx (45.98) bonds, respectively. However, 

in the UNCD films treated in T40 tube, two peaks near 397.1 eV and 398.1eV are present for 

N 1s band, that correspond to FeN (33.94at%) and C-Nx (66.06 at%) bonds, respectively. 

The Fe 2p3/2 peak included four components, whose peaks were centered at 707.1 eV, 708.3 

eV, 710.4 eV, and 711.3 eV, as shown in Fig. 6(c). In line with the existing literature [28], we 

can associate these components with FexN, Fe3C, Fe3O4 and FeOOH phases, respectively. 

NPIII favored the attainment of an interface type layer consisting of oxide, nitride, metals, 

sp2 phases and the diffusion zone characterized by a decreasing C content.
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For the UNCD film treated in T40 tube, the peak-to-peak separation (spin-orbital 

splitting) between these peaks is 13.2 eV, which corresponds to iron metal, as shown in 

Fig. 6(c). No peak shift was observed in the Fe 2p spectrum but only a decrease in peak 

intensity due to the sputter deposition layer. Another effect of NPIII in T40 tube that can 

be emphasized here is the disappearance of the diamond carbon at about 285.3 eV (Fig. 

6(a)), which indicates that most of the constituents on the surface are formed by metal 

nanoparticles sputter deposition from the conductive tube.

Fig. 6. High resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Fe 2p for the UNCD films after NPIII treatment in T110 and 
T40 tubes.

(a)                    (b)

(c)
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The incorporation of metallic atoms in these UNCD films is capable of creating 

surface changes and leaving the chemical inertia. This represents a viable path for 

a number of new applications. The special properties of the diamond for its hardness, 

thermal conductivity, optical transparency over a wide range of wavelength and chemical 

stability can be allied to these new features.

4 CONCLUSIONS

The surface modification of UNCD films by NPIII treatments changed the surface 

morphologies, increased the degree of disorder and the structural defects.  In UNCD films 

after NPIII treatments in T40 tube, diamond and other carbon phases are extinguished 

on the surface. Analysis of the treated surfaces have demonstrated a substantial 

dependence of NPIII performance with the tube diameter. Characteristic peaks of metal 

nanoparticles were found to coexist in the UNCD film after NPIII treatment in T110 tube 

and it is predominant in samples after NPIII treatment T40 tube case.  Raman spectra from 

the treated samples presented a decrease of the G and D peaks intensities attributed to 

increase of disorder induced by NPIII/T110 on sp2 phase (C=N) in the treated UNCD films.  

EDS results revealed the presence of nitrogen adsorbed in samples and new elements 

such as metal nanoparticles (Fe, Cr and Ni) by sputter deposition from conductive tube 

walls. This is a consequence of high concentration of nitrogen implanted into samples, 

proving the efficiency of the PIII process inside conductive tubes. The results indicate a 

significant difference of PIII performance when diameter of the tube is reduced from 110 

mm to 40 mm. In the case of T40 tube, changes caused by the increase of temperature 

due to the high ion flux bombarding on the surface, favored larger metal sputter deposition. 

A strong magnetic field attracted the samples of UNCD films after NPIII treatments in T40 

tube. This was an indirect diagnostic feature, which has been used to confirm the magnetic 

properties of the new film. This was due to the presence of the Fe atoms that can create 

magnetic carbon structures that could be very useful for protective-coating technology 

and other nano-electronic device applications. Here we have summarized the key 

experimental results and the understanding of UNCD films treated in conductive tubes. We 

have presented an overview of the changes in the properties upon nitrogen incorporation 

in these films. Applications for these types of new structures have been pointed out.  
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