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PREFACE

The insertion of new and enhanced materials based on materials belonging to 

the Nano scale in the day-by-day has growth up in a silent way.  In part, a number of 

works in the nanotechnology stemming of theoretical research using Density Functional 

Theory (DFT) and sophisticated simulation methods; another part is associated to the 

protected technologies associated to the military and patented nanomaterial and its 

process. In this sense, open access to recent aspects on the nanostructures application 

and properties can be reached in this book. Here, an interesting set of chapters gives 

opportunity of access texts that reach process and processing of nanostructures, 

applications of nanotechnology, advanced techniques to theoretical development. A broad 

set of nanostructures are here covered such as, nanocrystal, superficial nanograins, inner 

microstructures with nanograins, nanoaggregates, nanoshells, nanotubes, nanoflowers, 

nanoroad, nanosheets, Also, reveals new investigations areas as grainboundary of 

nanograins in ceramics and metals. A great number of software has been used as a tool 

of development of Science and Technologies for nanotechnology COMSOL Multiphysics 

5.2. Phenomena and properties has been investigated by recent or classical techniques 

of materials characterization as Localized Surface Plasmon Resonance (LSPR), X-ray 

photoelectron spectroscopy (XPS), Field Emission Gun Scanning Electron Microscopy 

(FEG-SEM) with Energy Dispersive Spectroscopy (EDS), Raman Scattering Spectroscopy 

(RSS), X ray diffraction (XRD), 57Fe Mössbauer spectroscopy, UV-vis spectroscopy, 

dynamic light scattering (DLS), Atomic Force Microscopy (AFM), and Field Emission 

Gun Scanning Electron Microscopy (FEG-SEM). In this sense, collections of spectra 

from Mössbauer spectroscopy, UV-vis spectroscopy and Infrared spectroscopy can be 

found. As a matter of fact, some chapter’s item can be seemed as specific protocols for 

synthesis, preparations and measurements in the nanotechnology.   

               I hope you enjoy your reading.

Prof. Dr. Marcos Augusto Lima Nobre
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CHAPTER 8

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) STUDY 
OF CONDUCTIVE TUBE AFTER NITROGEN PIII
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ABSTRACT: This work reports an X-ray 
photoelectron spectroscopy (XPS) study of 
inner surface modification of stainless steel 
(SS) conducting tubes after nitrogen plasma 
immersion ion implantation (PIII) within a 
non-uniform magnetic field. Nitrogen PIII 
was carried out in tubes of length 150 mm 
and diameters (D) of 110 mm, 40 mm and 15 
mm, for two arrangements: (a) a tube with 
an auxiliary electrode (AE) and (b) a tube 
without an AE. Metal nitrides (CrN, Cr2N and 
FeN) and oxide states were observed by 
XPS in all cases. In the presence of an AE, 
however, a significant reduction in oxidation 
and an increase in Cr2N for the tube with D 
= 40 mm were detected. Consequently, the 
wear rate decreased by about a factor of ten 
compared with the case without an AE. 
KEYWORDS: Chemical composition of SS 
surface. Plasma immersion ion implantation. 
X-ray photoelectron spectroscopy. PIII in 
magnetic field.

1 INTRODUCTION

Plasma immersion ion implantation 

(PIII) is a widely used technique for the 
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surface modification of materials, employed mainly to improve mechanical, chemical, 

and tribological properties of complex-shaped three-dimensional objects [1].  To alter 

a material’s surface properties, however, the treatment must achieve a high dose and 

conformal coverage [2]. These issues were discussed in several investigations, where 

it was suggested that the dose obtained could be influenced by the target geometries 

[3] [4]. Effective implantation is difficult in workpieces with concave, rather than flat or 

convex, geometry [5]. An example where PIII is ineffective is within metallic tubes, which 

are extensively used in the industry. According to Sheridan [4][6], this problem is caused 

by low ion energy during PIII. Possibly, this is caused by the reduction of the electric 

potential inside the tube, which is related to the aspect ratios: (a) the ratio between 

the tube radius and their length (R/L) [5] [7]; (b) ratio between the tube radius and the 

overload radius (R/D) [6] [8]. This approach is important because depending on the 

radius, the dose can be maximized producing a large number of ions with high impact 

energy bombarding the tube inner surface. Electron cyclotron resonance (ECR) and 

microwave discharges have been proposed in recent decades to produce greater doses, 

especially in small diameter tubes [9, 10].

Recently, PIII has been extensively used to improve some properties of austenitic 

stainless steel tubes. Stainless steel offers high corrosion resistance, low wear resistance 

and reduced hardness. These properties can be improved if implantation of nitrogen 

with a high retained dose is performed. To satisfy this condition requires a minimum 

temperature (of 350 to 400 ºC) in the tube to activate the diffusion process. Nitrogen 

diffusion caused by the increased temperature during implantation could cause great 

changes in surface properties owing to the formation of new phases (γN) and structures 

(chromium and iron nitrides). Thus, stainless steel tubes with this new surface layer could 

enhance significantly their properties. If, however, the temperature exceeds 450 ºC, the 

available chromium for chromium oxide can be reduced and there will be a decrease in 

the corrosion resistance [11].

Recently, interest has arisen in the possibility of using a magnetic field to enhance 

the PIII process for the treatment of tubes made of stainless steel [12, 13]. The principal 

advantage of this approach is related to promoting an electric discharge at low gas 

pressure [14]. This is possible owing to the presence of a magnetic field transversal to 

the electric field. In this configuration, a region with high plasma density is created via 

the intense background gas ionization caused by the trapped electrons where the E and 

B fields cross [11, 15]. Additionally, if an earthed electrode is introduced along the axis 

of the tube, the discharge occurs preferentially within Successful PIII depends on such 

conditions since higher pressures would cause undesirable arcing [16]. 
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Thus, the major objective of this work is to study the effects of nitrogen implantation 

on the changes in chemical composition of the inner surfaces of SS 304 tubes, using 

X-ray photoelectron spectroscopy (XPS), after performing PIII in a non-uniform magnetic 

field. Special attention is given to the analysis of the Fe 2p, Cr 2p and N 1s regions of the 

spectra. The analyses are completed with studies employing atomic force microscopy 

(AFM), scanning electron microscopy (SEM) and wear rate measurements to characterize 

the inner surfaces of the tubes. Tubes of D = 110 mm, 40 mm and 15 mm were studied in two 

arrangements: (a) tube with an auxiliary electrode and (b) tube without an auxiliary electrode. 

2 EXPERIMENTAL

In this work, tubes made of AISI type 304 Stainless Steel (SS), whose chemical 

composition is given in Table I, were used to perform nitrogen PIII on their inner surfaces.

Table I: Chemical composition (%) of type 304 Stainless Steel (SS) tubes

Iron Carbon Chrome Manganese Silicon Phosphorus Sulfur Nickel Nitrogen

67 to 72  0.07 18.00 2.00 1.00 0.045 0.015 8.00 0.10

This stainless steel was chosen since it has received considerable attention from 

the scientific and industrial community, owing to its excellent resistance to corrosion, 

low cost and extensive use in the manufacturing industry. Nitrogen ion implantation 

was carried out in a vacuum chamber of 20 liters with a system of two magnetic coils 

mounted on it to produce a non-uniform magnetic field configuration (magnetic bottle). 

This system is described in detail elsewhere [14]. Inside the chamber, metallic tubes of 

length 150 mm and diameters of 110 mm, 40 mm and 15 mm were placed on the axis to 

coincide with the region where the magnetic field has its minimum value. A SS grounding 

rod, 2 mm in diameter, was placed inside each tube to work as an auxiliary electrode 

(AE). For characterization of the inner surface of the tubes, specimens made of SS 

304 (3 mm thickness and 7.5 mm radius) were prepared. Five SS sample equidistantly 

distributed along the 150 mm length were used in each tube. The tubes were polished and 

subsequently cleaned in an ultrasound bath just before their insertion into the tubes with 

diameters of 110 mm and 40 mm. For the tube of smallest diameter (15 mm), five holes 

(diameter of 8 mm) were perforated equidistantly along the surface, to expose them to 

the internal plasma. A system of mechanical and diffusion pumps was used to reduce 

the pressure to about 2.0 x 10-2 Pa. Later, nitrogen gas was admitted into the system, 

reaching a working pressure of 3 Pa. The PIII treatment conditions were kept constant 

throughout the experiment, with 20 µs pulses of 6 kV at 500 Hz. The total current on the 
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target was measured with a Rogowski coil installed in the high voltage pulser. An infrared 

thermometer Micron model M90 with range between 250 - 2000 oC was used to monitor 

the temperature of the tubes. Measurements of total current density (j) and temperature 

(T) during the treatment of tubes for large, medium and small diameters are shown in 

Table II. Finally, the tubes were PIII treated for 60 min in a non-uniform magnetic field with 

an intensity between 60 G and 90G.

Table II: Current density (j) and temperature (T) for tubes with D = 110 mm, D = 40 mm and D = 15 mm after 60 min. 

of treatment with and without AE and in presence of magnetic field.

D =110 mm D = 40 mm D = 15 mm

Without AE With AE Without AE With AE Without AE

j (mA/cm2)    7.33    7.72      10.6    15.9       28.3

T (oC) < 250 < 250      340    475       440

After the treatment, samples placed on the inner surface of the tubes were 

characterized. Only the SS sample placed in the center part of each tube was used for all 

the characterization tests. Chemical composition was measured using XPS on a Kratos 

Axis UltraDLD electron spectrometer. The experimental resolution of the binding energy 

was less than 0.5 eV. Samples were excited with monochromatic Al kα radiation (1486.6 

eV) in an ultra-high vacuum of pressure less than 10-7 Pa, an acceleration voltage of 15 kV 

and a current of 10 mA. After Shirley-type background correction [15], peak fitting was 

performed using the Casa XPS software (2.3.15 version) with mixed Gaussian/Lorentzian 

(70/30) functions and least-squares fitting [16]. The chemical state of the SS sample after 

treatment was tested by examining the spectra of the Fe 2p and Cr 2p and N 1s regions 

after argon ion sputtering for 600 s. 

For XPS depth profiling of samples (tubes of D = 110 mm and 40 mm) treated by 

NPIII, the analysis area was 110 µm × 110 µm (small spot mode) for 600 s, resulting in a 

sputter rate of 10 nm/min.  In the untreated sample and the treated inner tube of D=15mm, 

the analysis were only superficial, the sputtering of an area of 700 x 300 µm (large spot 

mode) for 600 s was performed with an Ar+ ion gun (4 keV), resulting in a sputter rate of 

0.2 nm/min.

The assessment of the wear damage was performed with a microscope and a 

profilometer, following a pin-on-disk test in a CSM-Instruments tribometer. This was operated 

with a load of 1.0 N in air at a relative average humidity of about 47 %. An alumina ball of 3.0 

mm diameter with fixed linear velocity of 5 cm/s was used. A NanoScope V microscope, 

operated in the tapping mode, was used to analyze surface topography and roughness (Rq) 
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over a scanning area of 15 µm x 15 µm. Wear width was observed by SEM using an electron 

beam of 20.0 keV at a magnification of 500x, and a scanning time of 100 s.

3 RESULTS AND DISCUSSIONS

3.1 ELEMENTAL COMPOSITION

As XPS is a surface analysis technique, depth profiling of the samples was obtained 

by combining a sequence of ion gun etch cycles interleaved with XPS measurements.  

An ion gun was used to etch the material for 600 s before being turned off while XPS 

spectra were acquired.  Each ion gun etch cycle exposed a new surface and the XPS 

spectra allowed determination of the composition of the exposed surfaces. Elemental 

concentrations were thus revealed as a function of etch-time. 

Figure 1 shows XPS elemental concentrations seen after ion implantation for 

tubes with D = 110 mm: (a) without AE and (b) with AE; for tubes with D = 40 mm: (c) 

without AE and (d) with AE (e) D15 without AE (f) SS 304 untreated.

Fig. 1(a, b) shows XPS concentration profiles of O, Fe, C, Cr, Mn, Ni and N 

elements present for the tube with D = 110 mm. In the absence of an AE, [N] on the 

surface began at 2.5 at %, increasing to 5 at % and remaining constant thereafter. 

When an AE was introduced into the tube, [N] roughly doubled, then fell to about 5 at % 

at 180 s. The [Ni] was negligible until 420 s of etching (Fig. 1(a)). With an AE [Ni] initially 

rises, and reaches a plateau at ~150 s. Both with and without an AE, a significant [Mn] 

appears only at ~400 s. 

For the tube with D = 40 mm without AE, as shown in Fig. 1(c), [N] was initially zero 

and increased monotonically, reaching 5 at % at the end of the test. Similarly, a low [Cr], 

close to zero, may be observed. The C composition shows high atomic concentration 

(70 at %) on the surface and then falls, to reach ~8 at.% after 600 s. As can be seen 

in Fig. 1(d), when an AE is introduced, [Cr] and [N] increase throughout the etching 

process. Furthermore, no Mn or Ni was detected while [C] is similar to that found in 

the tube with D = 110 mm with and without the use of an AE. Both [Fe] and [O] profiles 

show plateaus throughout the argon ion sputtering. These results are similar to that for 

the tube with D = 15 mm (figure not shown) where a low [N] and [Cr] of about 1.5 at % 

were detected. For both tubes (D = 40 mm and D = 15 mm) there were plateaus of high 

[Fe] and [O]. This suggests the formation of an oxide layer on the surface, even though 

the same conditions were used for all cases. These facts can be attributed to a rise in 

temperature caused by the reduction in tube diameter, as suggested by the temperature 

measurements shown in Table II.
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Fig. 1: XPS elemental compositions seen after ion implantation for tubes with D = 110 mm: (a) without AE and (b) with 

AE; for tubes with D = 40 mm: (c) without AE and (d) with AE (e) D15 without AE (f) SS 304 untreated.
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mm are shown in Fig. 2 owing to the high current measured for this case, as can be seen 

in Table II; these are displayed in panels for Cr 2p and N 1s regions. However, information 

concerning binding energy, chemical state, atomic concentration and author references 

for Fe 2p3/2, Cr 2p3/2 and N 1s spectral lines in tubes with D = 110 mm and D = 15 mm are 

listed in Table III, for the SS304 untreated and treated samples [17-23]. 

3.2 CR 2P REGION

Fig. 2m (a, b, c, d, e, f) show deconvoluted XPS spectra of the Fe 2p, Cr 2p and N 

1s regions for the tube with D = 40 mm, with and without AE. 

Fig. 2: Spectra of Fe 2p, Cr 2p and N 1s regions for the tube of D = 40 mm.  Without AE:  (a), (c) and (e); With AE: 
(b), (d) and (f).  
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High intensity peaks of chromium-oxide (Cr2O3) after PIII are identified. Both CrN 

and CrO3 were also found for the both cases. According to the results of Table III, there 

is a decrease in the Cr2O3/CrN ratio from 5.2 to 1.9 when an AE is used. This indicates a 

greater [CrN] in the presence of an AE. For the tube with D = 110 mm, results presented in 

Table III indicate the presence of Cr2N peaks with similar intensities when the treatments 

are performed with and without AE. However, the Cr2N group was not detected when the 

diameter of tube was reduced from 110 mm to 40 mm. In the absence of AE, the Cr2O3/CrN 

ratio was 5.2 whereas it decreased to 1.9 when the AE was introduced. This result indicates 

a greater presence of CrN than Cr2O3 which resulted in increased surface hardness [24]. 

For the tube with D = 15 mm without AE, chromium oxide (Cr2O3) and metallic 

chromium were identified on the treated surface. These results are similar to the untreated 

sample case. For this diameter of tube, no formation of CrN was detected, even though 

the temperature in the tube increased to 440 oC (see Table II). It is possible that the low 

ion energy inside the tube was insufficient to promote this kind of chemical bond or the 

CrN layer was sputtered away.

3.3 N 1S REGION

The N 1s high resolution fitted spectra for the tube with D = 40 mm treated without 

an AE is shown in Fig. 2(e) The chemical states in this sample presented FeN (396.4 

eV), CrN (397.1 eV) and revealed Cr2N (398.0 eV). Some authors [20, 21] assign such 

peak energies (398.0 eV) to C-N. This coincides with the results observed throughout the 

etching time profile shown in Fig. 1(e), where an appreciable amount of contaminant carbon 
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remains near the surface after argon ion sputtering. For the case with an AE, evidence 

of high intensity CrN and Cr2N and/or FeN peaks was identified in Fig. 2(d). In addition, a 

weak peak observed at 400.4 eV indicates the possible presence of nitrogen absorbed in 

the Fe lattice [23]. We assume in this work that [Cr2N] is significantly greater than [FeN] 

owing to the high nitrogen ion current measured during the treatment (see Table II). On 

the other hand, for D = 110 mm, data of binding energies reported in Table III indicate the 

presence of CrN, Cr2N and/or FeN and nitrogen adsorbed in iron for the cases with and 

without an AE. With exception of nitrogen adsorbed in iron, similar concentrations at% of 

Cr2N and/or FeN and CrN were obtained for both cases.

When the tube diameter was reduced from 110 mm to 40 mm, the XPS results 

showed a decrease in the Cr2N/CrN intensity ratio, from 1.8 to 1.2, for the case without an 

AE, whereas with an AE it decreased from 1.7 to 0.9. These results indicate the presence 

of greater [CrN] in the tube with D = 40 mm with an AE. Another characteristic is the 

partial reduction of nitrogen adsorbed in iron for the case with an AE, and its total absence 

without an AE.

For D = 15 mm, the results shown in Table III indicate the presence of a high intensity 

peak at 403.4 eV that is related to NO2. Nitrogen adsorbed into iron was attributed to the 

peak at 400.1 eV, whereas the presence of FeN was identified at 396.4 eV. No Formation 

of CrN peak can be resulted to the increase of current density (j) and of the temperature 

of the PIII.

3.4 FE 2P REGION

Binding energies of the Fe 2p region for the tube with D = 40 mm, with and without 

AE are reported in Table III. After nitrogen PIII, FeN is detected for both arrangements as 

well as the satellite iron (Fe3+ sat), corresponding to SS304. The oxidation states were 

modified from FeO to Fe2O3, however, after introduction of the AE. However, the FeO/FeN 

to Fe2O3/FeN intensity ratio fell from 10.7 to 2.07. This indicates larger presence of FeN 

which was favored perhaps by higher temperatures during PIII.

On the other hand, information shown in Table III for the tube with D = 110 mm, 

without an AE, revealed bonding energies corresponding to FeN. Metallic iron (α-Fe) in 

the ground state, and Fe2O3 corresponding to iron oxide present in the bulk were also 

identified. After introduction of AE in PIII, similar chemical states were obtained, which 

indicate no significant changes with respect to these states. 

Remarkable differences are observed when the tube diameter is reduced from 

110 mm to 40 mm. For D = 40 mm, changes of oxidation states from Fe2O3 to FeO are 
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found for the tube without an AE. Perhaps, this is caused by the increase in temperature 

promoted by the high ion flux bombarding the surface (see current in Table II) which was 

favorable to oxidation. Another significant change detected is the variation of Fe2O3/FeN 

ratio. The analysis for the case with AE indicated an increment from 1.9 to 2.07. As can be 

noticed from this result, this occurs only when an AE is introduced into the tube.

Results obtained for D = 15 mm without an AE are compared to those of the 

untreated sample because it was not possible to perform an experiment with an AE in 

this case (the tube diameter was too small). As can be seen from Table III, the atomic 

concentration of the Fe2O3 oxidation state increased and a new FeO oxidation stage 

appeared after PIII. Although a high current density was measured, no FeN was observed, 

as indicated by the data shown in Table II.

In summary, iron oxide was present in all the analyzed tubes. This is attributed 

to the high affinity between oxygen and iron, which is favored by higher temperatures. 

Looking at Table II, a dependence on temperature is seen as the tube diameter is reduced 

(110 mm to 15 mm). The temperature increase is caused by ion implantation. This is 

consistent with the results shown in Fig. 1(a), which suggests thicker oxygenated layers 

after 600 s etching. The cause of so much oxygen, however, is not yet clear. Possibly, the 

intense electric field created at the ends of the tubes, promotes greater ionization of the 

gas. Clearly, the specific distribution of the magnetic field is also a contributing factor. 

Implanted oxygen may also originate from residual and adsorbed gas and water vapor.

Table III: Results of the XPS analyses. Binding Energy, chemical state and atomic concentration of standard and 
samples treated by nitrogen PIII for tubes with D = 110 mm, D = 40 mm and D = 15 mm.

Samples
Fe 2p3/2 Cr 2p3/2 N 1s

  BE 
(eV)

Chemical 
state *at% Ref

BE 
(eV)

Chemical 
state *at% Ref

BE 
(eV)

Chemical 
state *at% Ref

SS304 
untreated

706.9 Feº 1.8 [22] 574.1 Crº 4.4 [22]

709.9 FeO 34.7 [23] 576.6 Cr2O3 95.6 [22]

714.9 Fe3+ sat 63.5 [25]

D110
with AE

706.7 Feº 21.9 [22] 573.9 Crº 13.1 [22] 396.9 CrN 30.4
[22, 
24]

707.7 FeN 27.4
[26, 
27] 574.6 CrN 24.6 [22] 397.7 Cr2N/FeN 50.4 [22]

710.4 Fe2O3 50.7 [22] 576,4 Cr2N 62.4 [22] 399.9 N ads 19.2 [27]
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Samples
Fe 2p3/2 Cr 2p3/2 N 1s

BE 
(eV)

Chemical 
state *at% Ref

BE 
(eV)

Chemical 
state *at% Ref

BE 
(eV)

Chemical 
state *at% Ref

D110 
without 

AE

706.7 Feº 21.5 [22] 573.7 Crº 13.7 [22] 396.9 CrN 25.7
[22, 
24]

707.6 FeN 27.0
[26, 
27] 574.3 CrN 26.6 397.6 Cr2N/FeN 47.1 [22]

710.4 Fe2O3 51.5 [22] 576.1 Cr2N 59.8 [22] 399.2 N ads 27.2 [27]

D40
with AE

708.5 FeN 20.3 [26] 574.2 Crº 8.1
[22, 
23] 396.7 CrN 50.9

[22, 
24]

710.4 Fe2O3 42.1 [22] 575.4 CrN 27.9 [22] 397.7 Cr2N/FeN 44.0 [22]

714.9 Fe3+ sat 37.6 [25] 576.9 Cr2O3 52.3 [22] 400.4 N ads 5.0 [27]

579.3 CrO3 11.8
[22, 
24]

D40
without 

AE

707.1 FeN 4.7 [22] 574.3 Crº 4.2 [22] 396.4 FeN 30.8 [26]

709.3 FeO 50.1
[22, 
24] 575.6 CrN 11.7

[22, 
23] 397.1 CrN 31.4 [22]

713.6 Fe3+ sat 45.2 [25] 576.7 Cr2O3 60.8 [22] 398.0 Cr2N/C-N 37.7
[25, 
26]

578.4 CrO3 23.7 [25]

D15
without 

AE

709.4 FeO 27.7
[22, 
24] 573.9 Crº 6.4 [22] 396.4 FeN 27.5 [26]

711.4 Fe2O3 48.3
[22, 
24] 576.6 Cr2O3 93.6 [22] 400.1 N ads 10.4 [27]

717.8 Fe3+ sat 23.9 [25] 403.4 NO2 62.2
*atomic concentration (at%)

3.5 SURFACE MORPHOLOGY AND WEAR RATE

We also examined the topography of the inner surfaces of the tubes and their 

surface roughness (Rq) using AFM images. AFM images are shown in Fig. 3 and Rq data 

are reported in Table IV. 

 In Fig. 3(a) an AFM image of the untreated sample is show the scratches caused 

by the polishing are visible. Fig. 3 (b, c) shows AFM images of samples treated in the tube 

with D = 40 mm with and without an AE. In Fig. 3(b) for tube with D= 40 mm without an AE, 

the image is similar in morphology to the untreated one shown in Fig. 3(a). The morphology 

is similar to that observed in all of the implanted samples, except for the tube with D = 40 

mm with an AE. It is possible to see a significant, change in surface morphology after the 

treatment was performed with the presence of an AE.
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Fig. 3: AFM images of untreated tube (a), D = 40 mm without an AE (b), D = 110 mm with an AE (c).

The selection of this AFM image as representative was based on the similar Rq 

values reported in Table IV which indicate a small increase from 3.6 nm (untreated tube) to 

4.0 nm for tube with D= 40 mm, and 6.8 nm for tube with D = 15 mm of treatment without 

AE. When an AE was introduced into the tube with D = 40 mm, however, the AFM image in 
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Fig 3(c) revealed strong erosion of the sample surface, producing an increase in Rq, from 

4.0 nm to 14 nm. This result can be attributed to a greater ion current (about16 mA/cm2) 

and temperature (475 ºC), how can be seen in the Table II, causing higher sputtering rate 

and higher ion flux hitting the tube inside wall. 

Table IV: Roughness and wear rates for tubes with D = 110 mm, D = 40 mm and D = 15 mm after 60 min of treatment 
with and without AE. 

D =110 mm D = 40 mm D= 15 mm

Without AE With AE Without AE With AE Without AE

Roughness (nm) - 5.3 4.0 14.0 6.8

Wear (x10-5 mm3/Nm) 19.0 4.0 6.0 0.6 3.0

Wear results reveal a significant reduction of 19 x10-5 mm3/Nm to 4 x10-5 mm3/

Nm for samples treated in discharge with the presence of the AE, for D=40 mm tube. For 

D=110 mm tube when the AE was not used, the value of wear was from 6 x10-5 mm3/Nm and 

reduced to 0.6 x10-5 mm3/Nm with the presence of AE.  This can be explained by the XPS 

results discussed in 3.2 section where the increase of bonded Cr2N on the surface favored 

a decrease in wear. This did not happen for D = 110 mm without an AE, where a high wear 

rate was measured (19 x 10-5 mm3/Nm), however, as listed in Table IV. Typical widths of wear 

tracks caused by the ball of a pin-on-disk system are seen in the SEM images of Fig. 4.  One 

possible explanation for this result may be deduced from the etch time profiles of Fig 1(a, 

b), where the surface Ni concentrations are different. Recent studies [25] have associated 

that result with surface oxidation rather than nitrogen implantation/diffusion. Another 

investigation showed the presence of residual oxygen gas, depending on the gas feeding 

system in PIII experiments, which contributes to the copious formation of oxides [26]. 

Fig. 4: Images of the wear caused by the ball of a pin-on-disk system seen by scanning electron micrography of 
untreated tube (a), D = 40 mm tube without an AE (b), D = 40 mm tube with an AE (c).

4 CONCLUSIONS

Effects of nitrogen ion implantation on the inner walls of tubes as a function of their 

diameters were studied by XPS, after performing PIII employing a magnetic field using two 
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arrangements: SS tubes with and without AE. The Fe 2p, Cr 2p and N1s regions of the 

XPS spectra were used to study the chemical state of SS specimens. A dependence of 

the nitrogen incorporation on the tube diameter was revealed. This was most evident in 

a tube with D = 40 mm and in the presence of an AE, where the ion bombardment of the 

surface was intense. A surface with CrN, Cr2N and FeN of high roughness was detected. 

As a consequence, the resistance against wear was improved about five times compared 

to the one without an AE. In the other cases (tubes with D = 110 mm with an AE and D = 

15 mm without AE), the wear rate and surface topography were similar to the untreated 

sample. Finally, the presence of a high concentration of oxide on the top surface, in all 

tubes, was detected by XS after PIII. The effect increased for the tube smaller diameters. 

We conclude that PIII treatments inside the tubes were enhanced by the presence of the 

magnetic field for all three size tubes. It was particularly favorable for the case with the 

introduction of an AE for medium diameter (D = 40 mm) one. 
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